XC5VLX50-2FFG324I

发布时间:2020/10/29

XC5VLX50-2FFG324I_XC5VLX85-1FF676C导读

如图1所示,某些外部因素对功耗具有呈指数的影响;环境的微小变化即可造成预估功耗的重大变化。使用功耗估计工具虽难以达到精准,但仍然可以通过确认高功耗模块来为功耗优化提供极好的指导。功耗估计
功耗估计是低功耗设计中的一个关键步骤。虽然确定FPGA功耗的最准确方法是硬件测量,但功耗估计有助于确认高功耗模块,可用于在设计阶段早期制定功耗预算。

为了更好地适应智能互联的新世界,赛灵思继续以“柔性平台”为产品核心,抓住新的产业机遇,制定三大发展战略,以支持更广泛的市场应用。Victor
Peng指出,第一种策略是“数据中心优先”。在数据中心领域,重要的是要认识到,赛灵思不仅可以支持计算加速和数据中心的应用,还可以支持创造价值的存储和网络。


XC5VTX240T-1FFG1759I

与 AI 推断实现方案类似,非 AI
的预处理和后处理功能开始需要某种形式的加速。此外还有第三个挑战,而这也是较少为人所知的一个,其出现的原因在于 AI
推断无法单独部署。这些传统的处理功能必须运行在与 AI 功能相同的吞吐量下,同样需要实现高性能与低功耗。例如,图像可能需要完成解压缩和缩放后才能符合 AI
模型的数据输入要求。真正的 AI 部署通常需要非 AI 处理,无论是在 AI 功能之前还是之后。

四款产品中,旗舰处理器为锐龙9 5950X,和锐龙9
3950X一样,都是双CCD模块、16核心32线程、8MB二级缓存、64MB三级缓存,其中三级缓存从四块16MB变成了两块32MB,分别由8个核心共享,最高加速频率从4.7GHz来到了4.9GHz,基础频率则为3.4GHz。

。再加上大小写(大写/小写/全大全小/小型大写)、斜体(意大利体/罗马体)、缩放体(横向缩放)、粗细、指定大小(显示/文本)、波痕体、衬线(总体分为衬线体和无衬线体),这一数量可以扩充到数百万,使得文本识别成为机器学习领域中一个振奋人心的专业学科。随着人类语言书写形式的演进,已经发展出数千种独特的字体系。

动态功耗问题则用低电容电路和定制模块来解决。DSP模块中乘法器的功耗不到FPGA架构所构建乘法器的20%。鉴于制造偏差可导致漏电流分布范围很大,可筛选出低漏电流器件,以有效提供核心漏电功耗低于60%的器件。为了减少静态功耗,还全面采用了较长沟道和较高阈值的晶体管。FPGA的设计中使用了多种功耗驱动的设计技术。以Xilinx
Virtex系列为例,因为配置存储单元可占到FPGA中晶体管数的1/3,所以在该系列中使用了一种低漏电流的“midox”晶体管来减少存储单元的漏电流。


XC5VLX50-2FFG324I_XC5VLX85-1FF676C


XC5VLX50T-1FFG1136C

XC6VLX240T-1FF784I XC6VLX195T-2FF1156I
XC6VLX195T-2FF1156C XC6VLX195T-2FF784I XC6VLX195T-2FF784C XC6VLX130T-3FF1156C
XC6VLX130T-2FFG484C XC6VLX195T-3FFG1156C XC6VLX130T-2FFG784I XC6VLX240T-1FF1156C
XC6VLX195T-3FFG784C XC6VLX240T-1FF1759C XC6VLX240T-1FF1156I XC6VLX195T-1FF784C
XC6VLX130T-2FF784I XC6VLX130T-3FFG784C XC6VLX195T-1FF784I XC6VLX130T-2FFG1156C
XC6VLX130T-2FFG784C XC6VLX130T-2FF484I XC6VLX130T-2FFG1156I XC6VLX130T-1FF484I
XC6VLX130T-3FF784C XC6VLX130T-1FFG1156I 。

XCV200-6BG256AF XCV200-5PQG240I XCV200-5PQG240C
XCV200-5PQ240I XCV200-5PQ240C XCV2005PQ240C XCV200-5FGG456I XCV200-5FGG456C
XCV200-5FGG256I XCV200-5FGG256C XCV200-5FG456I XCV200-5FG456C XCV200-5FG456
XCV200-5FG256I XCV200-5FG256C XCV200-5BGG352I XCV200-5BGG352C 。

XC4VLX200-11FFG1513I XC4VLX200-12FF1513C
XC4VLX200-12FFG1513C XC4VLX200-10FFG1513C XC4VLX200-10FFG1513I
XC4VLX200-11FF1513C XC4VLX40-10FF1148I XC4VLX25-11FFG668C XC4VLX40-10FF668I
XC4VLX40-10FF1148C XC4VLX25-12FFG668C XC4VLX40-10FF668C XC4VLX25-12SFG363C
XC4VLX25-12FF668C XC4VLX25-11SF363I XC4VLX60-10FF1148I XC4VLX25-11SFG363I
XC4VLX25-11SF363C XC4VLX25-11FF668I XC4VLX25-11SFG363C XC4VLX25-11FFG668I
XC4VLX25-11FF668C XC4VLX160-10FFG1148I 。

XC4VSX55-11FFG1148C XC4VLX80-10FF1148I
XC4VLX80-10FFG1148I XC4VLX80-11FF1148C XC4VSX55-11FF1148C XC4VSX55-10FF1148I
XC4VSX55-11FFG1148I XC4VSX55-10FFG1148I XC4VSX35-12FFG668C XC4VSX35-11FFG668C
XC4VSX55-10FFG1148C XC4VSX35-12FF668C XC4VSX35-11FF668C XC4VSX35-10FF668I
XC4VSX35-11FFG668I 。

XC5VLX50-2FFG324I_XC5VLX85-1FF676C


I/O和时钟电路占全部活动功耗的1/3,如果使用高功耗的I/O标准,其功耗还会更高。据报告显示,活动功耗是设计在高温下活动时的功耗,包括动态和静态功耗两部分。CLB在活动功耗和待机功耗中占最主要部分,这不足为奇,但其他模块也产生可观的功耗。待机功耗是设计空闲时的功耗,由额定温度下的静态功耗组成。图2所示为XC3S1000的活动功耗和待机功耗分解图。

随着当前芯片制造工艺变得更加复杂并且芯片设计变得越来越复杂,芯片设计制造商的初始成本飙升,并且磁带的风险进一步增加。这相当于Xilinx的成功推广,并将与英特尔和Nvidia等公司展开更高的竞争。面对英特尔和NVIDIA等竞争对手,您应该专注于Xilinx的核心竞争力,即在硬件层面,它可以根据不同的工作负载和力量而非灵活和适应性,而不是传统的领域和竞争。作为较大的竞争对手,Altera已于2015年加入英特尔,赛灵思的新竞争对手已成为英特尔,NVIDIA等公司。需要降低芯片成本,降低拍摄风险,缩短产品上市时间将进一步喷发。